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1. Introduction

Inspiration for this work comes in large part from the two papers, [23] by R.

Williams and [4] by J. Cuntz and W. Krieger. To understand why, suppose

A and B are two square matrices, possibly of different sizes, whose entries

are non-negative integers. Then A and B are called strong shift equivalent

if there is a finite chain of square matrices with non-negative integer entries,

A1, A2, . . . , An, such that A1 = A, An = B and for each i, 1 ≤ i ≤ n−1, there is

a pair of matrices (Ri, Si) with non-negative integer entries such that Ai = RiSi

and Ai+1 = SiRi. (An individual pair (Ri, Si) is sometimes called an elemen-

tary strong shift equivalence between Ai and Ai+1.) On the other hand, if A is a

square matrix with non-negative integer entries, then there is a well-known pro-

cess for building a shift dynamical system (XA, σA) — a so-called shift of finite

type: One regardsA as the incidence matrix of a finite graph, E = (E0, E1, r, s),

where E0 is the space of vertices, E1 is the space of edges, and r (resp., s) is

the range map (resp., source map) from E1 to E0. The space XA, then, is

the two-sided infinite path space {(ei)i∈Z ∈ (E1)Z : s(ei+1) = r(ei)}. Evidently,

XA is a closed subset of the compact space (E1)Z that is invariant under the

shift map σ, given by σ(ei) = (ei+1). The shift map σ is a homeomorphism, of

course, and therefore, so is its restriction to XA, which is denoted σA. In [23,

Theorems A and F] Williams proved that the shift dynamical systems (XA, σA)

and (XB , σB) are conjugate, meaning that there is a homeomorphism φ from

XA to XB such that φ ◦ σA = σB ◦ φ, if and only if A and B are strong shift

equivalent.

Subsequently, in [4], Cuntz and Krieger attached a C∗-algebra, OA, to ev-

ery square matrix A having non-negative integer entries. Cuntz and Krieger

worked primarily with matrices whose entries have zeros and ones, but in [4,

Remark 2.16] they observe that their construction for zero-one matrices can be

adjusted to cover matrices with non-negative integer entries. In [4, Theorem 3.8]

they show that if (XA, σA) and (XB, σB) are conjugate, then OA and OB are

strongly Morita equivalent in the sense of Rieffel. Coupled with Williams’s the-

orem, we conclude that if A and B are two strong shift equivalent matrices,

then the C∗-algebras OA and OB are strongly Morita equivalent.

Reflecting on the graphs associated with shift dynamical systems and taking

into account developments in the theory of Cuntz–Krieger algebras that allow

one to express an OA in terms of a graph (see [20], for example), we were led to
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consider the following generalization of strong shift equivalence and its relation

to so-called Cuntz–Pimsner algebras. (Precise definitions of the terms used

and technical hypotheses, which are omitted here, will be developed thoroughly

in the body of the paper.) Suppose A and B are C∗-algebras and that E

(resp., F ) is a C∗-correspondence over A (resp., B) (so in particular, E and

F are bimodules over A and B, respectively). Then we shall say that E is

(elementary) strong shift equivalent to F in case there is a correspondence R

from A to B and a correspondence S from B to A (in particular, R is an A–B-

bimodule and S is a B–A-bimodule) such that E ∼= R ⊗B S and F ∼= S ⊗A R.

Given the relation between strong shift equivalence of matrices and the strong

Morita equivalence of the associated Cuntz–Krieger algebras, we were led to

speculate that if E and F are strong shift equivalent, then the Cuntz–Pimsner

algebras OE and OF are strongly Morita equivalent. It turns out that our

speculation is correct, at least under appropriate hypotheses, as we shall show

in Theorem 3.14. Our result captures the connection just discussed between

strong shift equivalence of matrices and the strong Morita equivalence of their

associated Cuntz–Krieger algebras, as we shall make clear in Section 5.

In the next section we develop the basic facts about correspondences,

Cuntz–Pimsner algebras, etc. that we need. We note that most places in the

literature, when constructing Cuntz–Pimsner algebras of correspondences, the

blanket assumption is made that the coefficient algebra acts faithfully on the

correspondence. However, in our investigation it is important to allow non-

faithful actions. Fortunately, Katsura recently has developed the theory of

C∗-correspondences where the action need not be faithful in [10], [11] and [12]

and he has extended the notion of Cuntz-Pimsner algebra to this setting. The

next section expands upon his work for our purposes.

In Section 3, we prove our main result, Theorem 3.14, just described. In

Sections 4 and 5, we explore the limitations and necessity of some of our tech-

nical hypotheses. Also, in Section 5 we show how our analysis relates to graph

C∗-algebras and shifts of finite type.

Acknowledgment. We are very grateful to Baruch Solel for valuable insights

and conversations that helped with our investigation. We are also grateful to

Berndt Brenken for some very helpful corrections to an initial draft.
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2. Preliminaries

2.1. C∗-correspondences. We follow the conventions of Lance [15] for our

terminology of Hilbert C∗-modules, and we use the notation and conventions

of Katsura in [10], [11] and [12] for C∗-correspondences.

Definition 2.1: If A is a C∗-algebra, then a right Hilbert A-module is a

Banach space X together with a right action of A on X and an A-valued inner

product 〈·, ·〉X satisfying

(i) 〈ξ, ηa〉X = 〈ξ, η〉Xa,

(ii) 〈ξ, η〉X = 〈η, ξ〉∗X ,

(iii) 〈ξ, ξ〉X ≥ 0 and ‖ξ‖ = ‖〈ξ, ξ〉X‖1/2,

for all ξ, η ∈ X and a ∈ A. For a Hilbert A-module X we let L(X) denote the

C∗-algebra of adjointable operators on X , and we let K(X) denote the closed

two-sided ideal of compact operators given by

K(X) := span{ΘX
ξ,η : ξ, η ∈ X}

where ΘX
ξ,η is defined by ΘX

ξ,η(ζ) := ξ〈η, ζ〉A. When no confusion arises we shall

often omit the superscript and write Θξ,η in place of ΘX
ξ,η.

Remark 2.2: IfX is a right Hilbert A-module and Y is a right Hilbert B-module,

then we may giveX⊕Y the structure of a right Hilbert A⊕B-module by defining

(x, y)(a, b) := (xa, yb) and 〈(x1, y1), (x2, y2)〉X⊕Y := (〈x1, x2〉X , 〈y1, y2〉Y ).

Definition 2.3: If A and B are C∗-algebras, then a C∗-correspondence from

A to B is a right Hilbert B-module X together with a ∗-homomorphism

φX : A → L(X). We consider φX as giving a left action of A on X by set-

ting a · x := φX(a)x. When X is a C∗-correspondence from A to B we will

sometimes write AXB to keep track of the C∗-algebras. If A = B we refer to X

as a C
∗-correspondence over A.

Definition 2.4: Let X and Y be C∗-correspondences from A to B. An isomor-

phism from X to Y is a surjective linear map T : X → Y with the property

that T (xb) = T (x)b, 〈T (x), T (y)〉Y = 〈x, y〉X and T (φX(a)x) = φY (a)T (x) for

all x, y ∈ X , b ∈ B, and a ∈ A. We say that X and Y are isomorphic if there

exists an isomorphism from X to Y , and in this case we write X ∼= Y .

Evidently, since 〈T (x), T (y)〉Y = 〈x, y〉X , an isomorphism is automatically

injective. Thus isomorphisms are bijective.
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Lemma 2.5: Let AXB and AYB be C∗-correspondences from A to B. Then T

induces a ∗-isomorphism T∗ : K(X) → K(Y ) by T∗(Θ
X
x,y) = ΘY

T (x),T (y). Also if

a ∈ A and φX(a) ∈ K(X), then T∗(φX(a)) = φY (a).

Proof. It is straightforward to check that defining T∗ : K(X) → K(Y ) by

T∗(Θ
X
x,y) := ΘY

T (x),T (y) and extending linearly gives a ∗-homomorphism. Since

(T−1)∗ is an inverse for this ∗-homomorphism T∗ is a ∗-isomorphism between

C∗-algebras. Furthermore, if φX(a) ∈ K(X), then

φX(a) = lim
n

Nn∑

k=1

ΘX
xn,k,yn,k

.

But then for any y ∈ Y we may let x := T−1(y) and we have

T∗(φX(a))y = T∗(φX(a))T (x) = T∗

(
lim
n

Nn∑

k=1

ΘX
xn,k,yn,k

)
T (x)

= lim
n

Nn∑

k=1

ΘY
T (xn,k),T (yn,k)T (x) = lim

n

Nn∑

k=1

T (xn,k)〈T (yn,k), T (x)〉Y

= lim
n

Nn∑

k=1

T (xn,k)〈yn,k, x〉X = lim
n

Nn∑

k=1

T (xn,k〈yn,k, x〉X)

= T

(
lim
n

Nn∑

k=1

xn,k〈yn,k, x〉X

)
= T

(
lim
n

Nn∑

k=1

ΘX
xn,k,yn,k

(x)

)

= T (φX(a)x) = φY (a)T (x) = φY (a)y

so that T∗(φX(a)) = φY (a).

2.2. Essential C∗-correspondences.

Definition 2.6: A C∗-correspondence X from A to B is said to be essential if

span{φX(a)x : a ∈ A and x ∈ X} = X .

It can be shown that X is essential if and only if whenever {eλ}λ∈Λ is an

approximate unit for A, then limλ φX(eλ)x = x for all x ∈ X .

Definition 2.7: If X is a C∗-correspondence from A to B, the essential sub-

space of X is defined to be

Xess := span{φX(a)x : a ∈ A and x ∈ X}.
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Notice that Xess is closed under addition and right multiplication by elements

of B. Thus Xess is a right Hilbert B-module with the inner product that

it inherits from X . In addition, if a ∈ A, then φX(a)|Xess
takes values in

Xess and hence φX(a) restricts to an element in L(Xess). Therefore, defining

φXess
(a) := φX(a)|Xess

makes Xess into a C∗-correspondence from A to B.

2.3. C∗-algebras associated with C∗-correspondences.

Definition 2.8: If X is a C∗-correspondence over A, then a representation of

X into a C∗-algebra B is a pair (t, π) consisting of a linear map t : X → B and

a ∗-homomorphism π : A→ B satisfying

(i) t(ξ)∗t(η) = π(〈ξ, η〉X ),

(ii) t(φX(a)ξ) = π(a)t(ξ),

(iii) t(ξa) = t(ξ)π(a),

for all ξ, η ∈ X and a ∈ A. We often write (t, π) : (X,A) → B in this situation.

Note that Condition (iii) follows from Condition (i) due to the equation

‖t(ξ)π(a) − t(ξa)‖2 = ‖(t(ξ)π(a) − t(ξa))∗(t(ξ)π(a) − t(ξa))‖ = 0.

If (t, π) : (X,A) → B is a representation of X into a C∗-algebra B, we let

C∗(t, π) denote the C∗-subalgebra of B generated by t(X) ∪ π(A).

Definition 2.9: A representation (t, π) : (X,A) → B is said to be injective if π

is injective. Note that in this case t will also be isometric since

‖t(ξ)‖2 = ‖t(ξ)∗t(ξ)‖ = ‖π(〈ξ, ξ〉X)‖ = ‖〈ξ, ξ〉A‖ = ‖ξ‖2.

Definition 2.10 (The Toeplitz Algebra of a C∗-correspondence): Given a C∗-

correspondence X over a C∗-algebra A, there is a C∗-algebra TX and a repre-

sentation (tX , πX) : (X,A) → TX that is universal in the following sense:

(1) TX is generated as a C∗-algebra by tX(X) ∪ πX(A); and

(2) Given any representation (t, π) : (X,A) → B of X into a C∗-algebra

B, there exists a ∗-homomorphism of ρ(t,π) : TX → B, such that t =

ρ(t,π) ◦ tX and π = ρ(t,π) ◦ πX .

The C∗-algebra TX and the representation (tX , πX) exist (see [8], for exam-

ple) and are unique up to an obvious notion of isomorphism. We call TX the

Toeplitz algebra of the C
∗-correspondence X , and we call (tX , πX) a

universal representation of X in TX .
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Definition 2.11: For a representation (t, π) : (X,A) → B of X into a C∗-algebra

B there exists a ∗-homomorphism ψt : K(X) → B with the property that

ψt(Θξ,η) = t(ξ)t(η)∗.

See [19, p. 202], [9, Lemma 2.2], and [8, Remark 1.7] for details on the existence

of this ∗-homomorphism. (We warn the reader that our map ψt is denoted by

π(1) in much of the literature, and by ρ(t,π) = ρ(ψ,π) in [8]. We have chosen to

use ψt in order to follow the conventions of Katsura in [10, 11, 12] and since

the map depends only on t and not on π.) It is shown in [11, Lemma 2.4] that

if (t, π) is an injective representation, then ψt is injective as well.

Definition 2.12: For an ideal I in a C∗-algebra A we define

I⊥ := {a ∈ A : ab = 0 for all b ∈ I}.

If X is a C∗-correspondence over A, we define an ideal J(X) of A by J(X) :=

φ−1
X (K(X)). We also define an ideal JX of A by

JX := J(X) ∩ (kerφX)⊥.

Note that JX = J(X) when φX is injective, and that JX is the maximal ideal

on which the restriction of φ is an injection into K(X).

Definition 2.13: If X is a C∗-correspondence over A, then a representation

(t, π) : (X,A) → B of X into a C∗-algebra B is said to be coisometric if

ψt(φX(a)) = π(a) for all a ∈ JX .

Definition 2.14 (The Cuntz–Pimsner Algebra of a C∗-correspondence): Given

a C∗-correspondence X over a C∗-algebra A, there is a C∗-algebra OX and

a coisometric representation (tX , πX) : (X,A) → OX that is universal in the

following sense:

(1) OX is generated as a C∗-algebra by tX(X) ∪ πX(A); and

(2) Given any coisometric representation (t, π) : (X,A) → B of X into a

C∗-algebra B, there exists a ∗-homomorphism of ρ(t,π) : OX → B, such

that t = ρ(t,π) ◦ tX and π = ρ(t,π) ◦ πX .

The C∗-algebra OX and the representation (tX , πX) exist (see [11, §4]) and

are unique up to an obvious notion of isomorphism. We call OX the Cuntz–

Pimsner algebra of the C
∗-correspondence X , and we call (tX , πX) a
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universal coisometric representation of X in OX . We also mention that

any universal coisometric representation (tX , πX) is injective.

2.4. The Gauge Action on Cuntz–Pimsner Algebras.

Definition 2.15: If X is a C∗-correspondence over A, we say that a representa-

tion (t, π) : (X,A) → B of X into a C∗-algebra B admits a gauge action if

for each z ∈ T there is a ∗-homomorphism βz : C∗(t, π) → C∗(t, π) such that

βz(t(ξ)) = zt(ξ) for all ξ ∈ X and βz(π(a)) = π(a) for all a ∈ A.

It is a consequence of this definition that βz is actually an automorphism with

β−1
z = βz , and that the map β : T → AutC∗(t, π) given by z 7→ βz is strongly

continuous.

Definition 2.16: If X is a C∗-correspondence over A and

(tX , πX) : (X,A) → OX

is the universal coisometric representation of X into OX , then the universal

property of OX implies that (tX , πX) admits a gauge action, which we denote

by γ : T → OX . We refer to γ as the canonical gauge action on OX .

Theorem 2.17 (The Gauge-Invariant Uniqueness Theorem for Cuntz–Pim-

sner Algebras): Let X be a C∗-correspondence over a C∗-algebra A, and let

(t, π) : (X,A) → B be a coisometric representation of X into a C∗-algebra B.

If C∗(t, π) is the C∗-subalgebra of B generated by the images, t(X) and π(A),

then the induced ∗-homomorphism ρ(t,π) : OX → C∗(t, π) is an isomorphism if

and only if (t, π) is injective and admits a gauge action.

The Gauge-Invariant Uniqueness Theorem is proven in [11, §6]. It is one

of our most important tools for constructing isomorphisms of Cuntz–Pimsner

algebras.

2.5. Tensor products of C∗-correspondences. If AXB is a C∗-corre-

spondence from A to B, and if BYC is a C∗-correspondence from B to C,

then we may form a correspondence X ⊗B Y from A to C, called the inter-

nal tensor product (sometimes also called the interior tensor product) as

follows: We first regard Y as a left B-module and form the algebraic tensor

product X � Y . We then let N be the subspace generated by

{xb� y − x� φY (b)y : x ∈ X, y ∈ Y, and b ∈ B}
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and form the balanced tensor product X �B Y := (X � Y )/N . If x � y is

an elementary tensor in X � Y , we let x �B y denote its equivalence class in

X �B Y . We give X � Y a right C action by defining (x �B y)c := x �B yc,

a left A action by defining φX�BY (a)(x�B y) = φX(a)x�B y, and a C-valued

inner product by defining

〈x1 �B y1, x2 �B y2〉X�BY := 〈y1, φY (〈x1, x2〉X)y2〉Y .

These formulas are well-defined and continuous on all of X �B Y and make

X�BY into a pre-C∗-correspondence from A to C. (In particular, the subspace

{z ∈ X�BY : 〈z, z〉X�BY = 0} is equal toN [15, p. 40] so that the inner product

on X �B Y is nondegenerate.) We then define X ⊗B Y to be the completion of

X �B Y with respect to the norm coming from the above inner product, and

we let x ⊗ y denote the equivalence class of x � y ∈ X � Y . We mention that

X ⊗B Y = span{x ⊗ y : x ∈ X and y ∈ Y }. If T ∈ L(X) and S ∈ L(Y ) with

φY (b)S(y) = S(φY (b)y) for all b ∈ B and y ∈ Y , then one can show that there

exists an operator T ⊗A S ∈ L(X ⊗A Y ) with (T ⊗A S)(x ⊗ y) = T (x) ⊗ S(y).

Note that if T ∈ K(X ⊗B Y ), then the linearity of the inner product, and

the fact that span{x ⊗ y : x ∈ X and y ∈ Y } is dense in X ⊗B Y allows us to

write T as the limit of finite sums of elements ΘX⊗BY
x⊗y,z⊗w; that is, the subscripts

in the generalized rank one operators may be chosen to be elementary tensors.

If X is a C∗-correspondence over A, then we may form the tensor product of

X with itself. For n ≥ 1 we let X⊗n denote the tensor product X ⊗A · · · ⊗AX

of n copies of X . We then have that

X⊗n = span{ξ1 ⊗ · · · ⊗ ξn : ξ1, . . . , ξn ∈ X}.

If (t, π) : (X,A) → B is a representation of X into a C∗-algebra B, then it is

straightforward to show that there exists a linear map tn : X⊗n → B defined

by tn(ξ1 ⊗ · · · ⊗ ξn) = t(ξ1) · · · t(ξn), and that (tn, π) : (X⊗n, A) → B is a

representation of X⊗n into B. In particular, there exists a ∗-homomorphism

ψtn : K(X⊗n) → B with

ψtn(ΘX⊗n

ξ,η ) = tn(ξ)tn(η)∗ for ξ, η ∈ X⊗n.

For n = 0 we define X⊗0 = A, and we take t0 := π. It can also be shown (see

[11, Proposition 2.7]) that

C∗(t, π) = span{tn(ξ)tm(η)∗ : ξ ∈ X⊗n, η ∈ X⊗m and n,m ∈ N}.
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The following proposition was proven in [7, Lemma 4.5] and will be useful for

us in our analysis.

Proposition 2.18: Let X be a C∗-correspondence over A and suppose that

the left action φX : A→ L(X) is injective. Also let n ≥ 1. If S ∈ L(X⊗n) and

S ⊗ Id ∈ K(X⊗(n+1)), then S ∈ K(X⊗n) and ψtn+1(S ⊗A Id) = ψtn(S).

3. Elementary Strong Shift Equivalence of Regular C∗-correspond-

ences

Definition 3.1: We say that a C∗-correspondence AXB from A to B is regular

if the left action φX : A → L(X) is injective and imφX ⊆ K(X). Note that if

X is regular, then JX = J(X) = A.

Definition 3.2: Let AEA be a C∗-correspondence over A and let BFB be a C∗-

correspondence over B. We say that E is elementary strong shift equiv-

alent to F if there exists a C∗-correspondence ARB from A to B and a C∗-

correspondence BSA from B to A such that

E ∼= R⊗B S and F ∼= S ⊗A R.

We shall spend the remainder of this section proving that if E and F are es-

sential, regular C∗-correspondences that are elementary strong shift equivalent,

then OE is Morita equivalent to OF .

Definition 3.3: Let ARB be a C∗-correspondence from A to B and let BSA be

a C∗-correspondence from B to A. The bipartite inflation of S by R is a

C∗-correspondence X over A⊕B defined in the following way: We let

X = S ⊕R

be a right Hilbert A ⊕ B-module as in Remark 2.2, and we make X into a

C∗-correspondence X over A⊕B by defining

φX(a, b)(s, r) := (φS(b)s, φR(a)r).

Note that the order of S and R are relevant and, in particular, the bipartite

inflation of S by R is not equal to the bipartite inflation of R by S.

Throughout this section fix C∗-algebrasA andB, and fix a C∗-correspondence

ARB from A to B and a C∗-correspondence BSA from B to A. We shall set
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(3.1) E = R⊗B S and F = S ⊗A R

so that E, which is a C∗-correspondence over A, is elementary strong shift

equivalent to F , which is a C∗-correspondence over B. We shall also let X =

S ⊕ R denote the bipartite inflation of S by R, which is a C∗-correspondence

over A⊕B.

Proposition 3.4: With the notation above, we have X⊗2 ∼= E ⊕ F as C∗-

correspondences. Furthermore, there exists an isomorphism T : X⊗2 → E ⊕ F

with the property that T ((s, r) ⊗ (s′, r′)) = (r ⊗ s′, s⊗ r′).

Proof. We begin by defining a balanced bilinear map T0 :X ⊕X→E ⊕ F

by T0((s, r), (s
′, r′)) = (r ⊗ s′, s ⊗ r′). Then T0 induces a linear map

T : X �A⊕B X → E ⊕ F , and for any pair of elementary tensors (s1, r1) �A⊕B

(s′1, r
′
1), (s2, r2) �A⊕B (s′2, r

′
2) ∈ X �A⊕B X we have

〈T ((s1, r1) �A⊕B (s′1, r
′
1)), T ((s2, r2) �A⊕B (s′2, r

′
2))〉E⊕F

=〈(r1 ⊗ s′1, s1 ⊗ r′1), (r2 ⊗ s′2, s2 ⊗ r′2)〉E⊕F

=(〈r1 ⊗ s′1, r2 ⊗ s′2〉E , 〈s1 ⊗ r′1, s2 ⊗ r′2〉F )

=(〈s′1, φR(〈r1, r2〉R)s′2〉S , 〈r
′
1, φS(〈s1, s2〉S)r′2〉R)

=〈(s′1, r
′
1), (φR(〈r1, r2〉R)s′2, φS(〈s1, s2〉S)r′2)〉X

=〈(s′1, r
′
1), φX(〈s1, s2〉S , 〈r1, r2〉R)(s′2, r

′
2)〉X

=〈(s1, r1) �A⊕B (s′1, r
′
1), (s2, r2) �A⊕B (s′2, r

′
2)〉X⊗2 .

Because the inner product is bilinear, this shows that 〈T (x), T (y)〉E⊕F =

〈x, y〉X⊗2 for all x, y ∈ X �A⊕B X . Thus T is bounded and extends to a map

T : X⊗2 → E ⊕F , which preserves inner products. Furthermore, it is straight-

forward to check that T (φX⊗2(a, b)z) = φE⊕F (a, b)T (z) for all (a, b) ∈ A ⊕ B

and z ∈ X⊗2. Finally, since T preserves inner products we have that T is

injective, and since span{r ⊗ s′ : r ∈ R and s′ ∈ S} = R ⊗B S = E and

span{s ⊗ r′ : s ∈ S and r′ ∈ R} = S ⊗A R = F we see that T is surjective.

Thus T is an isomorphism of C∗-correspondences.

Lemma 3.5: If φR⊗BS and φS⊗AR are injective, then φX is injective.

Proof. Since φE(a) = φR(a) ⊗ Id for all a ∈ A, we see that if φR(a) = 0,

then φR⊗BS(a) = 0 and the injectivity of φR⊗BS implies that a = 0. Thus

φR is injective. Similarly, the injectivity of φS⊗AR implies that φS is injective.
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Because X = S ⊕ R and φX(a, b) = φS(b) ⊕ φR(a) for all (a, b) ∈ A ⊕ B, we

have that φX is injective.

Lemma 3.6: If a ∈ JR⊗BS and φR⊗BS(a) = limn

∑Nn

k=1 ΘR⊗BS
rn,k⊗sn,k,r′n,k

⊗s′
n,k

,

then φX⊗2(a, 0) = limn

∑Nn

k=1 ΘX⊗2

(0,rn,k)⊗(sn,k,0),(0,r′n,k
)⊗(s′

n,k
,0).

Proof. Since E = R ⊗B S and φE⊕F = φE ⊕ φF , we see that φE⊕F (a, 0) =

limn

∑Nn

k=1 ΘE⊕F
(rn,k⊗sn,k,0),(r′n,k

⊗s′
n,k

,0). Using the isomorphism,

((r ⊗ s′), (s⊗ r′) 7→ (s, r) ⊗ (s′, r′)

from E⊕F toX⊗2 established in Proposition 3.4, we may then apply Lemma 2.5

to obtain the result.

Lemma 3.7: Suppose φR⊗BS and φS⊗AR are injective. Let

(tX , πX) : (X,A⊕B) → OX

be a universal coisometric representation of X into OX . Then there exists a

coisometric representation (t, π) : (R ⊗B S,A) → OX with

t(r ⊗ s) = tX(0, r)tX(s, 0) and π(a) = πX(a, 0)

for all r ⊗ s ∈ R⊗B S and for all a ∈ A.

Proof. Begin by defining π : A → OX by π(a) := πX(a, 0). Since (r, s) 7→

(0, r)⊗ (s, 0) is a balanced bilinear map from R⊕ S to X⊗2, it induces a linear

map T : R �B S → X⊗2. If r �B s and r′ �B s′ are elementary tensors in

R�B S, then

〈T (r �B s), T (r′ �B s
′)〉X⊗2 = 〈(0, r) ⊗ (s, 0), (0, r′) ⊗ (s′, 0)〉X⊗2

= 〈(s, 0), φX(〈(0, r), (0, r′)〉X)(s′, 0)〉X

= (〈s, φR(〈r, r′〉R)s′, 0)

= (〈r ⊗ s, r′ ⊗ s′〉R⊗S , 0).

By the bilinearity of the inner product, it follows that 〈T (z), T (w)〉X⊗2 =

(〈z, w〉R⊗BS , 0) for all z, w ∈ R �B S. Thus |T (z)| = |〈T (z), T (z)〉X⊗2|1/2 =

|(〈z, z〉R⊗BS , 0)|1/2 = |z| so T is isometric and extends to a map T :R⊗BS→X⊗2.

If we let t := t2X ◦ T , then t : R⊗B S → OX and t(r ⊗ s) := tX(0, r)tX(s, 0).
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We shall now show that (t, π) is a representation of R⊗B S into OX . If a ∈ A

and r ⊗ s and r′ ⊗ s′ are elementary tensors in R⊗B S, then

t(r ⊗ s)∗t(r′ ⊗ s′) = tX(s, 0)∗tX(0, r)∗tX(0, r′)tX(s′, 0)

= tX(s, 0)∗πX(〈(0, r), (0, r′)〉X)tX(s′, 0)

= tX(s, 0)∗πX((0, 〈r, r′〉R))tX(s′, 0)

= πX(〈s, φS(〈r, r′〉R)s′〉S , 0)

= π(〈r ⊗ s, r′ ⊗ s′〉R⊗BS).

and

t(φR⊗BS(a)(r ⊗ s)) = tX(0, φR(a)r)tX (s, 0) = tX(φX(a, 0)(0, r))tX(s, 0)

= πX(a, 0)tX(0, r)tX(s, 0) = π(a)t(r ⊗ s).

Because of linearity and the fact that elementary tensors span a dense subset

of X⊗2, the above two equations show that Condition (i) and Condition (ii) of

Definition 2.8 hold and (t, π) is a representation of R⊗B S.

To see that (t, π) is coisometric, let a ∈ JR⊗BS and write φR⊗BS(a) =

limn

∑Nn

k=1 ΘR⊗BS
rn,k⊗sn,k,r′n,k

⊗s′
n,k

. Then

(3.2) φX⊗2(a, 0) = lim
n

Nn∑

k=1

ΘX⊗2

(0,rn,k)⊗(sn,k,0),(0,r′n,k
)⊗(s′

n,k
,0)

by Lemma 3.6. Hence

ψt(φR⊗BS(a)) = lim
n

Nn∑

k=1

t(rn,k ⊗ sn,k)t(r
′
n,k ⊗ s′n,k)

∗

= lim
n

Nn∑

k=1

tX(0, rn,k)tX(sn,k, 0)(tX(0, r′n,k)tX(s′n,k, 0))∗

= lim
n

Nn∑

k=1

t2X((0, rn,k) ⊗ (sn,k, 0))t2X((0, r′n,k) ⊗ (s′n,k, 0))∗

=ψt
X2

(
lim
n

Nn∑

k=1

ΘX⊗2

(0,rn,k)⊗(sn,k,0),(0,r′n,k
)⊗(s′

n,k
,0)

)

=ψtX2
(φX⊗2 (a, 0)) = ψtX2

(φX(a, 0) ⊗ Id).

From Lemma 3.5 it follows that φX is injective. Also, φX(a, 0) ⊗ Id =

φX⊗2(a, 0) ∈ K(X) from (3.2). Thus the above equation and Proposition 2.18



328 P. S. MUHLY, D. PASK AND M. TOMFORDE Isr. J. Math.

show that ψt(φR⊗BS(a)) = ψt
X2

(φX(a, 0) ⊗ Id) = ψtX (φX(a, 0)) = πX(a, 0) =

π(a) and (t, π) is coisometric.

Lemma 3.8: Suppose φR⊗BS and φS⊗AR are injective. If

(t, π) : (R⊗B S,A) → OX

is the coisometric representation defined in Lemma 3.7, then (t, π) admits a

gauge action.

Proof. Let

(tX , πX) : (X,A) → OX

be a universal coisometric representation of X into OX . For z ∈ T define

(tz , πz) : (X,A) → OX by πz = πX and tz(s, r) := tX(sz, r) for (s, r) ∈ X =

S ⊕ R. Then tz is a linear map, and we see that (tz, πz) is a representation

since:

tz(s, r)
∗tz(s

′, r′) = tX(sz, r)∗tX(s′z, r) = πX(〈(sz, r), (s′z, r′)〉X)

= πX(〈sz, s′z〉S, 〈r, r
′〉R)

= πX(〈s, s′〉S , 〈r, r
′〉R)

= πX(〈(s, r), (s′, r′)〉X)

= πz(〈(s, r), (s
′, r′)〉X)

and

tz(φX(a, b)(s, r)) = tz(φS(b)s, φR(a)r) = tX(φS(b)sz, φR(a)r)

= tX(φX(a, b)(sz, r))

= πX(a, b)tX(sz, r)

= πz(a, b)tz(s, r).

We shall also show that (t, π) is coisometric. If (a, b) ∈ JX , then

φX(a, b) = lim
n

Nn∑

k=1

ΘX
(sn,k.rn,k),(s′

n,k
,r′

n,k
).
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Since X = S ⊕ R and φX(a, b) = φS(b) ⊕ φR(a) it follows that φS(b) =

limn

∑Nn

k=1 ΘS
sn,k,s′n,k

and φR(a) = limn

∑Nn

k=1 ΘR
rn,k,r′n,k

. Thus

ψtz(φX(a, b))

=ψtz (φX(a, 0)) + ψtz (φX(0, b))

=ψtz (lim
n

Nn∑

k=1

ΘX
(0,rn,k),(0,r′

n,k
)) + ψtz(limn

Nn∑

k=1

ΘX
(sn,k,0),(s′n,k

,0))

= lim
n

Nn∑

k=1

tz(0, rn,k)tz(0, r
′
n,k)

∗ + lim
n

Nn∑

k=1

tz(sn,k, 0)tz(s
′
n,k, 0)∗

= lim
n

Nn∑

k=1

tX(0, rn,k)tX(0, r′n,k)
∗ + lim

n

Nn∑

k=1

tX(sn,k, 0)z(tX(s′n,k, 0)z)∗

= lim
n

Nn∑

k=1

tX(0, rn,k)tX(0, r′n,k)
∗ + lim

n

Nn∑

k=1

tX(sn,k, 0)tX(s′n,k, 0)∗

=ψtX

(
lim
n

Nn∑

k=1

ΘX
(0,rn,k),(0,r′

n,k
) + lim

n

Nn∑

k=1

ΘX
(sn,k,0),(s′n,k

,0)

)

=ψtX (φX(a, 0) + φX(0, b)) = ψtX (φX(a, b)) = πX(a, b) = πz(a, b).

Since (tz, πz) is a coisometric representation, it induces a ∗-homomorphism

βz := ρ(tz ,πz) : OX → OX with βz ◦ tX = tz and βz ◦ πX = πz .

If (t, π) : (R ⊗B S,A) → OX is the coisometric representation defined in

Lemma 3.7, then for any elementary tensor r⊗s in R⊗BS we have βz(t(r⊗s)) =

βz(tX(0, r)tX(s, 0)) = tz(0, r)tz(s, 0) = tX(0, r)tX(sz, 0) = ztX(0, r)tX(s, 0) =

zt(r⊗ s). Since the elementary tensors span a dense subset of R⊗B S it follows

that βz(t(ξ)) = t(ξ) for all ξ ∈ R⊗B S. In addition, βz(π(a)) = βz(πX(a, 0)) =

πz(a, 0) = πX(a, 0) = π(a) for all a ∈ A. Thus (t, π) admits a gauge action.

Lemma 3.9: Suppose φR⊗BS and φS⊗AR are injective. Let

(tX , πX) : (X,A⊕B) → OX

be a universal coisometric representation of X into OX . Then there exists a

coisometric representation (t′, π′) : (S ⊗A R,B) → OX with

t′(s⊗ r) = tX(s, 0)tX(0, r) and π′(b) = πX(0, b)
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for all s ⊗ r ∈ S ⊗A R and for all b ∈ B. Furthermore, (t′, π′) admits a gauge

action.

Proof. Let X = S ⊕ R be the bipartite inflation of S by R, and let (tX , πX) :

(X,A ⊕ B) → OX be a universal coisometric representation of X into OX .

Also let Y = R ⊕ S be the bipartite inflation of R by S so that, in particular,

Y is a right Hilbert B ⊕ A-module as in Remark 2.2, and Y made into a C∗

correspondence over B ⊕ A by defining

φY (b, a)(r, s) := (φR(a)r, φS(b)s).

We may define a representation (tY , πY ) : (Y,B⊕A) → OX by letting tY (r, s) :=

tX(s, r) for (r, s) ∈ Y , and πY (b, a) := πX(a, b) for (b, a) ∈ B ⊕A.

It is straightforward to verify that (tY , πY ) is a coisometric representation

of Y into OX . Furthermore, it is also straightforward to show that (tY , πY ) is

universal. (In particular, this implies that OY
∼= OX .)

We may now apply Lemma 3.7 (after interchanging the roles of R and S and

the roles of A and B in the statement of the lemma) to conclude that there

exists a coisometric representation (t′, π′) : (S ⊗A R,B) → OX with t′(s⊗ r) =

tY (0, s)tY (r, 0) and π′(b) = πY (b, 0). But then t′(s ⊗ r) = tX(s, 0)tX(0, r) and

π′(b) = πX(0, b). Furthermore, Lemma 3.8 shows that (t′, π′) admits a gauge

action.

Lemma 3.10: Let E be a C∗-correspondence over A. Suppose R is a C∗-

correspondence from A to B, and S is a C∗-correspondence from B to A with

the property that E ∼= R ⊗B S. Then

Eess
∼= Ress ⊗B Sess.

Proof. Since (r, s) 7→ r ⊗ s is a balanced bilinear mapping from Ress ⊕ Sess to

R⊗BS, it induces a linear map T : Ress�BSess → R⊗BS with T (r�Bs) = r⊗s.

Furthermore, because

〈T (r �B s), T (r′ �B s
′)〉R⊗BS = 〈r ⊗ s, r′ ⊗ s′〉R⊗BS = 〈s, φR(〈r, r′〉R)s′〉S

= 〈s, φRess
(〈r, r′〉Ress

)s′〉Sess

= 〈r �B s, r
′ �B s

′〉Ress⊗BSess

we see that T extends to an isometric map T : Ress ⊗B Sess → R⊗ S. Further-

more, if r ∈ Ress and s ∈ Sess, then by the Hewitt–Cohen factorization Theorem
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[22, Proposition 2.33] we may write r = φR(a)r′. Thus

T (r ⊗ s) = φR(a)r′ ⊗ s = φR⊗BS(a)(r′ ⊗ s) ∈ (R ⊗B S)ess

and hence imT ⊆ (R ⊗ S)ess.

For the reverse inclusion, choose any such elementary tensor φR(a)r⊗ s, and

let {eλ}λ∈Λ be an approximate unit for B. Then limλ reλ = r and

φR(a)r ⊗ s = lim
λ
φR(a)reλ ⊗ s = lim

λ
φR(a)r ⊗ φS(eλ)s

= lim
λ
T (φR(a)r ⊗ φS(eλ)s)

= T (lim
λ
φR(a)r ⊗ φS(eλ)s)

so that φR(a) ⊗ s is in the image of T , and because the span of elementary

tensors of the form φR(a)r ⊗ s is dense in (R ⊗B S)ess we have that im T =

(R⊗B S)ess. Thus T is an isomorphism from Ress ⊗B Sess onto (R⊗ S)ess, and

since E ∼= R⊗B S we have Eess
∼= Ress ⊗B Sess .

Corollary 3.11: Let E be a C∗-correspondence over A, let F be a C∗-

correspondence over B, and suppose that E and F are elementary strong

shift equivalent. If E and F are essential, then there exists an essential C∗-

correspondence R′ from A to B and an essential C∗-correspondence S′ from B

to A for which

E ∼= R′ ⊗B S
′ and F ∼= S′ ⊗A R

′.

Proof. Since E and F are elementary strong shift equivalent there exist R and

S with E ∼= R ⊗B S and F ∼= S ⊗A R. Because E = Eess
∼= Ress ⊗B Sess and

F = Fess
∼= Sess ⊗A Ress, we may take R′ = Ress and S′ = Sess.

Lemma 3.12: Suppose R and S are essential, and let X be the bipartite in-

flation of S by R. If (tX , πX) : (X,A ⊕ B) → OX is a universal coisometric

representation of X into OX , then there exist projections PE and PF in the

multiplier algebra M(OX) such that

(1) PE tX(s, r) = tX(s, 0),

(2) tX(s, r) PE = tX(0, r),

(3) PE πX(a, b) = πX(a, 0),

(4) PF tX(s, r) = tX(0, r),

(5) tX(s, r) PF = tX(s, 0) and

(6) PF πX(a, b) = πX(0, b)
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for all (s, r) ∈ X and (a, b) ∈ A⊕B.

Proof. Let {eλ}λ∈Λ be an approximate unit for B. Since S is essential,

limλ φS(eλ)s = s for all s ∈ S. For any element

(3.3) tX(s1, r1) · · · tX(sn, rn)tX(s′mr
′
m)∗ · · · tX(s′1, r

′
1)

∗

we have that

lim
λ
πX(0, eλ)tX(s1, r1) · · · tX(sn, rn)tX(s′mr

′
m)∗ · · · tX(s′1, r

′
1)

∗

= lim
λ
tX(φS(eλ)s1, 0)tX(s2, r2) · · · tX(sn, rn)tX(s′mr

′
m)∗ · · · tX(s′1, r

′
1)

∗

= tX(s1, 0)tX(s2, r2) · · · tX(sn, rn)tX(s′mr
′
m)∗ · · · tX(s′1, r

′
1)

∗,

so this limit exists. Because any element of OX can be approximated by a finite

sum of elements of the form shown in (3.3), we see that limλ πX(0, eλ)x exists

for all x ∈ OX . Let us view OX as a C∗-correspondence over itself (see [22,

Example 2.10]). If we define PE : OX → OX by PE(x) := limλ πX(0, eλ)x then

we see that for any x, y ∈ OX we have

y∗PE(x) = lim
λ
y∗πX(0, eλ)x = lim

λ
(πX(0, eλ)y)

∗x = PE(y)∗x

and hence PE is an adjointable operator on OX . Therefore PE defines (left mul-

tiplication by) an element in the multiplier algebra M(OX) [22, Theorem 2.47].

It is easy to check that P 2
E = P ∗

E = PE so that PE is a projection. Furthermore,

PE has properties (1), (2) and (3) in the statement of the lemma.

If we let {fλ}λ∈Λ be an approximate unit for A, then a similar argument can

be used to show PF (x) := limλ πX(fλ, 0)x defines a projection in M(OX) with

properties (4), (5) and (6).

Lemma 3.13: If E and F are regular, then R and S are regular and X is

regular.

Proof. Since E = R⊗B S, we see that if φR(a) = 0, then

φE(a)(r ⊗ s) = φR(a)(r) ⊗ s = 0

for all r ∈ R and s ∈ S. Hence φE(a) = 0 and by the injectivity of φE we

have that a = 0. Thus φR is injective. In addition, for any a ∈ A we see that

φE(a) ∈ K(E). Since φE(a) = φR(a) ⊗ Id and φE is injective, Proposition 2.18

implies that φR(a) ∈ K(R). Thus R is regular. Because F = S ⊗A R, a similar

argument shows that S is regular.
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Furthermore, since X = S⊕R and φX(a, b) = φS(b)⊕φR(a) it is straightfor-

ward to show that φX is injective, and φX(a, b) ∈ K(X) for all (a, b) ∈ A⊕ B.

Thus X is regular.

Theorem 3.14: Let E be an essential, regular C∗-correspondence over a C∗-

algebra A, and let F be an essential, regular C∗-correspondence over a C∗-

algebra B. If E is elementary strong shift equivalent to F , then OE is Morita

equivalent to OF .

In particular, if we write E ∼= R ⊗B S and F ∼= S ⊗A R, with both R and

S essential, then OE and OF are isomorphic to complementary full corners of

OX , where X is the bipartite inflation of S by R.

Proof. Since E and F are essential and elementary strong shift equivalent, we

may use Corollary 3.11 to write E ∼= R ⊗B S and F ∼= S ⊗A R with R and S

essential. Let X be the bipartite dilation of S by R as defined in Definition 3.3,

and let (tX , πX) : (X,A⊕B) → OX be a universal coisometric representation of

X into OX . Also let (t, π) : (R⊗B S,A) → OX and (t′, π′) : (S⊗AR,B) → OX

be the coisometric representations defined in Definition 3.7 and Definition 3.9,

respectively. By Lemma 3.8 and Lemma 3.9, the representations (t, π) and

(t′, π′) admit gauge actions. Furthermore, π and π′ are both injective since πX

is injective. Hence by the Gauge-Invariant Uniqueness Theorem these represen-

tations induce injective ∗-homomorphisms into OX and we have OE
∼= C∗(t, π)

and OF
∼= C∗(t′, π′).

Let PE and PF be the projections in M(OX) defined in Lemma 3.12. We

will prove that PEOXPE = C∗(t, π). To begin, note that

t(r ⊗ s) = tX(0, r)tX(s, 0) = PEtX(0, r)tX(s, 0)PE ∈ PEOXPE

and since the elementary tensors span a dense subset of R ⊗B S we have that

im t ⊆ PEOXPE . Similarly, π(a) = πX(a, 0) = PEπ(a, 0)PE ∈ PEOXPE so

that imπ ⊆ PEOXPE . Thus C∗(t, π) ⊆ PEOXPE .

To see the reverse inclusion, note that

OX = span{tX(s1, r1) · · · tX(sn, rn)tX(s′m, r
′
m)∗ · · · tX(s′1, r

′
1)

∗ : m,n ≥ 0}.

Thus to prove that PEOXPE ⊆ C∗(t, π) it suffices to show that

PEtX(s1, r1) · · · tX(sn, rn)tX(s′m, r
′
m)∗ · · · tX(s′1, r

′
1)

∗PE ∈ C∗(t, π).
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To do this, we first notice the following equation holds:

PEtX(s1, r1)tX(s2, r2) · · · tX(sn, rn)

= tX(0, r1)tX(s2, r2) · · · tX(sn, rn)

= tX(0, r1)PF tX(s2, r2) · · · tX(sn, rn)

= tX(0, r1)tX(s2, 0) · · · tX(sn, rn)

= tX(0, r1)tX(s2, 0)PE · · · tX(sn, rn)

...

=





tX(0, r1)tX(s2, 0) · · · tX(0, rn−1)tX(sn, 0)PE if n is even

tX(0, r1)tX(s2, 0) · · · tX(sn−1, 0)tX(0, rn)PF if n is odd.

and then we consider three cases.

Case 1: n and m are both even

In this case

PEtX(s1, r1) · · ·tX(sn, rn)tX(s′m, r
′
m)∗ · · · tX(s′1, r

′
1)

∗PE

=tX(0, r1)tX(s2, 0) · · · tX(0, rn−1)tX(sn, 0)PEPEtX(s′m, 0)∗

× tX(0, r′m−1)
∗ · · · tX(s′2, 0)∗tX(0, r′1)

∗

=tX(0, r1)tX(s2, 0) · · · tX(0, rn−1)tX(sn, 0)

× (tX(0, r′1)tX(s′2, 0) · · · tX(0, r′m−1)tX(s′m, 0))∗

=t(r1 ⊗ s2) · · · t(rn−1 ⊗ sn)(t(r
′
1 ⊗ s′2) · · · t(r

′
m−1 ⊗ s′m))∗

which is in C∗(t, π).

Case 2: One of m and n is even and the other is odd.

First suppose that n is odd and m is even. Then since PE and PF are

orthogonal, we have that

PEtX(s1, r1) . . .tX(sn, rn)tX(s′m, r
′
m)∗ . . . tX(s′1, r

′
1)

∗PE

=tX(0, r1)tX(s2, 0) . . . tX(sn−1)tX(0, rn)PFPEtX(s′m, 0)∗

× tX(0, r′m−1)
∗ . . . tX(s′2, 0)∗tX(0, r′1)

∗

=0

which is in C∗(t, π). The situation when n is even and m is odd is similar.
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Case 3: n and m are both odd

Let {eλ}λ∈Λ be an approximate unit for A ⊕ B. Then since E and F are

regular, it follows from Lemma 3.13 that X is regular. Hence we may write

φX(eλ) = limj

∑Nj

k=1 ΘX
(sλ

j,k
,rλ

j,k
),(vλ

j,k
,uλ

j,k
)
, and

πX(eλ) = ψtX (φX(eλ)) = lim
j

Nj∑

k=1

tX(sλj,k, r
λ
j,k)tX(vλj,k, u

λ
j,k)

∗.

Then

PEtX(s1, r1) . . . tX(sn, rn)tX(s′m, r
′
m)∗ . . . tX(s′1, r

′
1)

∗PE

= lim
λ
PEtX(s1, r1) . . . tX(sn, rn)π(eλ)tX(s′m, r

′
m)∗ . . . tX(s′1, r

′
1)

∗PE

= lim
λ

lim
j

Nj∑

j=1

PEtX(s1, r1) . . . tX(sn, rn)tX(sλj,k, r
λ
j,k)

× tX(vλj,k, u
λ
j,k)

∗tX(s′m, r
′
m)∗ . . . tX(s′1, r

′
1)

∗PE

which is in C∗(t, π) since it is a limit of sums of terms of the form described

in Case 1.

Thus we have shown that C∗(t, π) = PEOXPE . A similar argument shows

that C∗(t′, π′) = PFOXPF . Thus OE and OF are isomorphic to the corners

determined by PE and PF , respectively.

To see that C∗(t, π) = PEOXPE is full, suppose that I is an ideal of OX con-

taining C∗(t, π). Then I contains π(a) = πX(a, 0) for all a ∈ A. If {fλ}λ∈Λ is an

approximate unit for A, then for any s ∈ S we have that limλ(s, 0)(eλ, 0) = (s, 0)

so that tX(s, 0) = limλ tX(s, 0)πX(eλ, 0) = limλ tX(s, 0)π(eλ) is in I. Further-

more, if b ∈ B, then since S is regular by Lemma 3.13, we may write φS(b) =

limn

∑Nn

n=1 ΘS
sn,k,s′n,k

. Because X = S ⊕R as a right Hilbert A⊕B-module, we

see that φX(0, b) = φS(b)⊕0 = limn

∑Nn

n=1 ΘX
(sn,k,0),(s′n,k

,0). In addition, since X

is regular we may write π(0, b) = φX(0, b) = limλ

∑Nn

n=1 tX(sn,k, 0)tX(s′n,k, 0)∗,

and thus π(0, b) is in I. Hence for any (a, b) ∈ A⊕ B we have that πX(a, b) =

πX(a, 0)+πX(0, b) is in I. But this implies that I is all of OX . Thus C∗(t, π) =

PEOXPE is full. A similar argument shows that C∗(t′, π′) = PFOXPF is full.

Finally, it follows from the relations in Lemma 3.12 that PE + PF = 1 in

M(OX). Thus the corners determined by PE and PF are complementary. Since
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OE and OF are isomorphic to complementary full corners of OX , it follows that

OE and OF are Morita equivalent.

4. Non-essential C∗-correspondences

In Theorem 3.14 we required that the C∗-correspondencesE and F be essential.

It is unclear to the authors whether elementary strong shift equivalence of (not

necessarily essential) regular C∗-correspondences E and F will always imply

Morita equivalence of OE and OF . However, in this section we are able to prove

that we may replace essentiality by the condition that the C∗-correspondence

is over a unital C∗-algebra.

Proposition 4.1: Let X be a C∗-correspondence over a C∗-algebra A. If A is

unital, then JX = JXess .

Proof. Recall that φXess
(a) = φX(a)|Xess

for all a ∈ A. If a ∈ A, then for each

x ∈ X we see that φX(a)(x) = φX(a)φX(1)x = φXess
(a)(φX(1)x). It follows

that kerφX = kerφXess
.

Additionally, if a ∈ J(X), then φX(a) = limn

∑Nn

k=1 ΘX
xn,k,yn,k

. For any

z ∈ Xess we may use the Hewitt-Cohen factorization Theorem [22, Proposi-

tion 2.33] to write z = φX(b)w for b ∈ A and w ∈ X . We then have

φX(a)z = φX(1)φX(a)φX(b)w = φX(1) lim
n

Nn∑

k=1

ΘX
xn,k,yn,k

(φX(b)w)

= φX(1) lim
n

Nn∑

k=1

xn,k〈yn,k, φX(b)w〉X

= lim
n

Nn∑

k=1

φX(1)xn,k〈yn,k, φX(1∗)φX(b)w〉X

= lim
n

Nn∑

k=1

φX(1)xn,k〈φX(1)yn,k, φX(b)w〉X

= lim
n

Nn∑

k=1

ΘXess

φX(1)xn,k,φX(1)yn,k
(z)
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so that φXess
(a) = limn

∑Nn

k=1 ΘXess

φX(1)xn,k,φX (1)yn,k
∈ K(Xess) and J(X) ⊆

J(Xess). In addition, we see that if a ∈ J(Xess), then

φXess
(a) = lim

n

Nn∑

k=1

ΘXess

x′
n,k

,y′
n,k

and since φX(a)x = φXess
(a)(φX(1)x) it is straightforward to show that φX(a) =

limn

∑Nn

k=1 ΘX
x′

n,k
,y′

n,k
∈ K(X). Thus J(Xess) = J(X). It follows that JXess

=

JX .

Proposition 4.2: Let X be a C∗-correspondence over a C∗-algebra A. If A

is unital, then OXess is isomorphic to a full corner of OX . Consequently OX is

Morita equivalent to OXess .

Proof. Let i : Xess ↪→ X be the inclusion map. Let (tX , πX) → OX be the

universal coisometric representation of X into OX . We define a representation

(t, π) : (Xess, A) → OX by setting t := tX ◦ i and π := πX . It is straightforward

to verify that (t, π) is a representation.

To see that (t, π) is coisometric, let a ∈ JXess
. Then by Proposition 4.1 we

have that a ∈ JX . If we write φX(a) = limn

∑Nn

k=1 ΘX
xn,k,yn,k

, then arguing as

in Proposition 4.1 shows that φXess
(a) = limn

∑Nn

k=1 ΘXess

φX(1)xn,k,φX(1)yn,k
. Thus

ψt(φXess
(a)) = lim

n

Nn∑

k=1

t(φX(1)xn,k)t(φX(1)yn,k)
∗

= lim
n

Nn∑

k=1

πX(1)tX(xn,k)tX(yn,k)
∗πX(1)

= πX(1)

(
lim
n

Nn∑

k=1

tX(xn,k)tX(yn,k)
∗

)
πX(1)

= πX(1)ψtX (φX(a))πX(1)

= πX(1)πX(a)πX(1)

= πX(a)

= π(a)

so (t, π) is coisometric.

It follows that (t, π) induces a ∗-homomorphism ρ(t,π) : OXess
→ OX . Since

π = πX is injective, and since (t, π) admits a gauge action (simply use the
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canonical gauge action of OX) it follows from the Gauge-Invariant Uniqueness

Theorem that ρ(t,π) is injective and OXess
∼= C∗(t, π).

To see that C∗(t, π) is a corner of OX determined by the projection πX(1),

simply note that

πX(1)
(
tX(x1) · · · tX(xn)tX(ym)∗ · · · tX(y1)

∗
)
πX(1)

= tX(φX(1)x1) · · · tX(φX(1)xn)tX(φX(1)ym)∗ · · · tX(φX(1)y1)
∗

= t(φX(1)x1) · · · t(φX(1)xn)t(φX(1)ym)∗ · · · t(φX(1)y1)
∗.

Since the elements tX(x1) · · · tX(xn)tX(ym)∗ · · · tX(y1)
∗ span a dense subset of

OX we see that πX(1)OXπX(1) ⊆ C∗(t, π).

Furthermore, if t(x1) . . . t(xn)t(ym)∗ . . . t(y1)
∗ ∈ C∗(t, π), then because

φX(1)x = x for x ∈ Xess we have that

t(x1) · · · t(xn)t(ym)∗ · · · t(y1)
∗

= πX(1)tX(x1) · · · tX(xn)tX(ym)∗ · · · tX(y1)
∗πX(1)

which is in πX(1)OXπX(1). Since the elements t(x1) . . . t(xn)t(ym)∗ . . . t(y1)
∗

span a dense subset of C∗(t, π) we have that C∗(t, π) ⊆ πX(1)OXπX(1). Thus

πX(1)OXπX(1) = C∗(t, π).

Finally, to see that this corner is full, note that πX(1)OXπX(1) contains π(A)

and hence any ideal containing πX(1)OXπX(1) must be all of OX .

Theorem 4.3: Let E be a regular C∗-correspondence over a C∗-algebra A,

and let F be an regular C∗-correspondence over a C∗-algebra B. Suppose that

either E is essential or A is unital. Also suppose that either F is essential or

B is unital. If E is elementary strong shift equivalent to F , then OE is Morita

equivalent to OF .

Proof. Since E and F are elementary strong shift equivalent we may write E ∼=

R⊗B S and F ∼= S⊗AR. By Lemma 3.10 we have that Eess
∼= Ress⊗B Sess and

Fess
∼= Sess ⊗A Ress. Since E and F are regular, it follows from Proposition 4.1

that Eess and Fess are regular. Therefore Theorem 3.14 implies that OEess
is

Morita equivalent to OFess
. Because E is either essential or unital, we have that

either OE = OEess
, or OE is Morita equivalent to OEess

by Proposition 4.2.

Similarly, since F is either essential or unital, we have that either OF = OFess
,

or OF is Morita equivalent to OFess
by Proposition 4.2. Thus OE is Morita

equivalent to OF .



Vol. 167, 2008 SHIFT EQUIVALENCE 339

5. Graph C∗-algebras: Examples and Counterexamples

We use the conventions established in [14, 13, 3, 6, 21, 2] for graph C∗-algebras.

We also refer the reader to [20] for a more comprehensive treatment of graph

C∗-algebra theory; although we warn the reader that the direction of the arrows

in [20] is “opposite” of what is used in [14, 13, 3, 6, 21, 2] and of what is used

here.

If E = (E0, E1, r, s) is a graph, then the graph C
∗-algebra C∗(E) is the

universal C∗-algebra generated by a collection of mutually orthogonal projec-

tions {pv : v ∈ E0} together with a collection of partial isometries {se : e ∈ E1}

with mutually orthogonal range projections that satisfy

(1) s∗ese = pr(e) for all e ∈ E1,

(2) ses
∗
e ≤ ps(e) for all e ∈ E1,

(3) pv =
∑

{e:s(e)=v} ses
∗
e for all v ∈ E0 with 0 < |s−1(v)| <∞.

Alternatively, given a graph E = (E0, E1, r, s) one may define a C∗-correspond-

ence X(E) over A := C0(E
0) by letting

X(E) :=

{
x : E1 → C : the function v 7→

∑

{f∈E1:r(f)=v}

|x(f)|2 is in C0(E
0)

}
.

and giving X(E) the operations

(x · a)(f) := x(f)a(r(f)) for f ∈ E1

〈x, y〉X(E)(v) :=
∑

{f∈E1:r(f)=v}

x(f)y(f) for v ∈ E0

(a · x)(f) := a(s(f))x(f) for f ∈ E1.

We call X(E) the graph C
∗-correspondence associated to E, and it is a

fact that OX(E)
∼= C∗(E) [8, Proposition 4.4]. Thus the graph C∗-algebra

may be thought of as the Cuntz–Pimsner algebra associated to the graph C∗-

correspondence. We refer the reader to [18, §3] for a more detailed discussion

and analysis of graph C∗-correspondences.

5.1. Examples. We shall show how graph C∗-algebras give examples illustrat-

ing Theorem 3.14.

Definition 5.1: If E = (E0, E1, r, s) is a graph, then the vertex matrix of E

is the E0 × E0 matrix AE with entries

AE(v, w) := #{e ∈ E0 : s(e) = v and r(e) = w}.
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Let E and F be row-finite graphs with no sinks. If the matrices AE and AF

are elementary strong shift equivalent, then there are matrices R and S with

non-negative entries for which AE = RS and AF = SR. It follows that R must

be a E0 × F 0 matrix, and S must be a F 0 × E0 matrix. In this case we may

create a bipartite graphGR,S as follows: We let G0
R,S := E0tF 0, and for v ∈ E0

and w ∈ F 0 we draw R(v, w) edges from v to w, and S(w, v) edges from w to

v. (So, in particular, the vertex matrix of GR,S is AGR,S
= ( 0 R

S 0 ) and GR,S is

bipartite.) It has been shown independently by Bates [1, Theorem 5.2] and by

Drinen and Sieben [5, Proposition 7.2] that C∗(E) and C∗(F ) are isomorphic

to complementary full corners of C∗(GR,S), and thus Morita equivalent.

Example 5.2: Let E and F be the following graphs.

E v
b

//a
%%

w c
xx

F x
e

//d
%%

y
f

// z g
yy

Then we see that AE = ( 1 1
0 1 ) and AF =

(
1 1 0
0 0 1
0 0 1

)
are elementary strong shift

equivalent by taking R = ( 1 1 0
0 0 1 ) and S =

(
1 0
0 1
0 1

)
. The bipartite graph GR,S is

then equal to

v β 44

γ

&&M
M

M

M

M

M

M

M

M

M

M

M

M

x
α

tt

GR,S w

ζ

++

yδ
oo

z

ε
kk

Also, C∗(E) and C∗(F ) are isomorphic to complementary full corners of

C∗(GR,S). In fact, if {se, pv} is a generating Cuntz-Krieger E-family for C∗(E)

and if {Se, Pv} is a generating Cuntz-Krieger G-family for C∗(GR,S), then the

∗-homomorphism that identifies C∗(E) with a full corner of C∗(GR,S) maps

pv 7→ Pv, pw 7→ Pw, sa 7→ SβSα, sb 7→ SγSδ and sc 7→ SζSε.

Also, if {te, qv} is a generating Cuntz-Krieger F -family for C∗(F ), then the

∗-homomorphism that identifies C∗(F ) with a full corner of C∗(GR,S) maps

qx 7→ Px, qy 7→ Py, qz 7→ Pz,

td 7→ SαSβ , te 7→ SαSγ , tf 7→ SδSζ and tg 7→ SεSζ .
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Definition 5.3: For a rectangular I × J matrix R with non-negative entries we

create a bipartite graph GR by defining G0
R := I t J and for i ∈ I and j ∈ J

we draw R(i, j) edges from i to j.

For this graph we may construct a C∗-correspondence XR from A := C0(I)

to B := C0(J) by setting

XR :=

{
x : G1

R → C : the function v 7→
∑

{f∈G1
R:r(f)=v}

|x(f)|2 is in C0(J)

}
.

and giving XR the operations

(x · b)(f) := x(f)b(r(f)) for f ∈ G1
R

〈x, y〉XR
(j) :=

∑

{f∈G1
R

:r(f)=j}

x(f)y(f) for j ∈ J

(a · x)(f) := a(s(f))x(f) for f ∈ G1
R.

Example 5.4: If R and S are the matrices in Example 5.2, then GR and GS are

the following graphs:

v //

&&N
N

N

N

N

N

N

N

N

N

N

N

N

x

GR w

&&N

N

N

N

N

N

N

N

N

N

N

N

N

y

z

v xoo

GS w yoo

z

ffN
N

N

N

N

N

N

N

N

N

N

N

N

This relates to Theorem 3.14 in the following way. Since E and F are row-

finite with no sinks, it follows thatX(E) andX(F ) are regular [18, Remark 3.3].

In addition, graph C∗-correspondences are always essential [18, Section 3].

The fact that AE = RS and AF = SR implies that X(E) ∼= X(GR) ⊗B
X(GS) and X(F ) ∼= X(GS) ⊗A X(GR). Hence the graph C∗-correspondences

X(E) and X(F ) are elementary strong shift equivalent. The bipartite inflation

of X(GS) by X(GR) is equal to X(GR,S). Thus Theorem 3.14 implies that

OX(E)
∼= C∗(E) and OX(F )

∼= C∗(F ) are isomorphic to complementary full

corners of OX(GR,S)
∼= C∗(GR,S). In this way we recover [1, Theorem 5.2] and

[5, Proposition 7.2] as special cases of Theorem 3.14.

5.2. Counterexamples. We shall use graph C∗-algebras to provide coun-

terexamples to generalizations of the statement of Theorem 3.14.
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We have already mentioned in Section 4 that the authors are unsure whether

Theorem 3.14 remains true if E and F are not essential. On the other hand, the

condition that E and F are regular is necessary. When we impose the condition

that a C∗-correspondence be regular, we require the left action to be injective as

well as act by compact operators. We shall show that both of these conditions

are necessary in Theorem 3.14.

If we let E1 and E2 be the following graphs

E1 v woo // x E2 y // z

then AE1
=

(
0 0 0
1 0 1
0 0 0

)
and AE2

= ( 0 1
0 0 ) are elementary strong shift equiva-

lent by taking R =
(

0 0
0 1
0 0

)
and S = ( 0 1 0

1 0 1 ). Reasoning as in Section 5.1

shows that the graph C∗-correspondences X(E1) and X(E2) are elementary

strong shift equivalent. Furthermore, X(E1) and X(E2) are essential (as are

all graph C∗-correspondences). In addition, since E1 and E2 are row-finite,

their left actions act as compact operators, and we have J(X(E1)) = C0(E
0
1 )

and J(X(E2)) = C0(E
0
2 ). However, since each of E1 and E2 has sinks, the left

actions of the associated graph C∗-correspondences are not injective. Thus nei-

ther X(E1) nor X(E2) is regular. In addition, OX(E1)
∼= C∗(E1) is not Morita

equivalent to OX(E2)
∼= C∗(E2) because C∗(E1) contains two proper ideals and

C∗(E2) is simple. This shows that we cannot remove the regularity condition

in Theorem 3.14.

Moreover, there is an example, described in [1, Example 5.4], which shows

that there exist non-row-finite graphs E1 and E2 with no sinks that have graph

C∗-correspondences that are elementary strong shift equivalent but have C∗-

algebras that are not Morita equivalent. Thus one needs the left action to be

both injective and act as compact operators.

Finally, we mention some natural questions that arise when one considers

elementary strong shift equivalence of C∗-correspondences. We have seen that

elementary strong shift equivalence of C∗-correspondences implies Morita equiv-

alence of the associated Cuntz–Pimsner algebras. It is natural to ask whether

this equivalence holds at higher levels — in particular, at the level of Toeplitz

algebras, or at the level of C∗-correspondences. Thus there are three natural

questions one can ask.

Let E and F be essential, regular C∗-correspondences.
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Question 1: If E and F are elementary strong shift equivalent, then is it

necessarily the case that E and F are Morita equivalent (as defined in [17])?

Question 2: If E and F are elementary strong shift equivalent, then is it

necessarily the case that the Toeplitz algebras TE and TF are Morita equivalent?

Question 3: If E and F are elementary strong shift equivalent, then is it

necessarily the case that the Cuntz–Pimsner algebras OE and OF are Morita

equivalent?

We have seen that Theorem 3.14 provides an affirmative answer to Question 3.

In addition, the questions asked above are successively weaker in the following

sense: If E and F are Morita Equivalent as C∗-correspondences, then it follows

that TE and TF are Morita Equivalent. Furthermore, since the Cuntz–Pimsner

algebra is a quotient of the Toeplitz algebra by a certain ideal, we see that if

the Morita equivalence between OE and OF takes the appropriate ideal to the

appropriate ideal, then OE and OF .

When the authors began this project, they intended to prove a theorem that

would provide an affirmative answer to Question 1, and then obtain affirmative

answers to Question 2 and Question 3 as corollaries by using the arguments of

the previous paragraph. However, upon deeper investigation it appears that

Question 2 and Question 3 have negative answers. In particular, the Morita

equivalence can only be guaranteed to hold at the level of Cuntz–Pimsner alge-

bras, and not at the level of Toeplitz algebras or C∗-correspondences.

To see this, let E and F be the following graphs.

E v //
��

ZZ
w
��

ZZ F x //
��

ZZ
y ((

66 z
��

ZZ

Then we see that AE = ( 2 1
0 2 ) and AF =

(
2 1 0
0 0 2
0 0 2

)
are elementary strong shift

equivalent by taking R = ( 2 1 0
0 0 2 ) and S =

(
1 0
0 1
0 1

)
. Reasoning as in Section

5.1 shows that the graph C∗-correspondences X(E) and X(F ) are elementary

strong shift equivalent. Also, X(E) and X(F ) are essential, and since E and F

are row-finite with no sinks, it follows that X(E) and X(F ) are regular.

As discussed in [18, Section 3] and [18, Theorem 3.7] the Toeplitz algebra

of X(E) is the C∗-algebra of the graph formed by outsplitting E at all of its

vertices. Similarly for F . Thus if we let Ẽ and F̃ be the following graphs
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Ẽ v //
��

99

		��   B
B

B

B

B

B

B

B

w
��

ff

�� 		

v′ w′

F̃ x //
��

99

		�� ��
?

?

?

?

?

?

?

?

y ((
66

��
''

z
��

ee

		��

x′ y′ z′

then TX(E)
∼= C∗(Ẽ) and TX(F )

∼= C∗(F̃ ). However, since the proper saturated,

hereditary subsets of Ẽ are

∅ {w′} {w,w′} {v′} {v′, w′} {v′, w, w′}

and because Ẽ satisfies Condition (K) we see that C∗(Ẽ) has exactly 6 proper

ideals. In addition, since the saturated, hereditary subsets of F̃ are

∅ {z′} {y′, z′} {y, z, z′} {y, y′, z, z′} {x′} {x′, z′}

{x′, y′, z′} {x′, y, z, z′} {x′, y, y′, z, z′}

and because F̃ satisfies Condition (K) we see that C∗(F̃ ) has exactly 10 proper

ideals. Thus TX(E)
∼= C∗(Ẽ) and TX(F )

∼= C∗(F̃ ) are not Morita equivalent,

and this provides a negative answer to Question 2. Moreover, it provides a

negative answer to Question 1, since Morita equivalence of C∗-correspondences

implies Morita equivalence of the associated Toeplitz algebras.

Remark 5.5: We conclude with a thought which motivated us at the outset,

but which we could not verify. Suppose that E is an essential, regular C∗-

correspondence over a C∗-algebra A. Then for every n ∈ N, the map

T 7→ T ⊗ IdE that embeds L(E⊗n) in L(E⊗(n+1)) carries K(E⊗n) into

K(E⊗(n+1)). Let A denote the inductive limit lim
−→

K(E⊗n) and let E := E⊗AA.

Then E is an invertible correspondence over A in the sense that E is an im-

primitivity bimodule (from A to A) and, as is shown in [19, Theorem 2.5], the

Cuntz–Pimsner algebra OE is isomorphic to OE . Suppose too that F is an

essential, regular C∗-correspondence over the C∗-algebra B and let B and F be

the analogous inductive limit and invertible correspondence. One of our initial

approaches to proving Theorem 3.14 was to try to prove that if E and F are

strong shift equivalent then E and F are Morita equivalent in the sense of [17].

While the implication still seems plausible, we are unable to decide whether it is

true or not. It seems like the “right” conjecture to make in view of Williams’s

theorems. In fact, one is enticed to speculate on its converse, too: If E and

F are Morita equivalent in the sense of [17], then are E and F strong shift
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equivalent? An “if and only if” theorem would indeed be a perfect analogue of

Williams’s theorems.
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